
ANTAL ELECTRONIC

Field Bus and Communication Technology

Manual
PDP2CAN

Version 3.08

 ANTAL ELECTRONIC
Höfles 4 • 91322 Gräfenberg

Telefon (+49) 09192/9256 0 • Fax (+49) 09192/9256 78

Important Notice

Antal Electronic reserve the right to make any modifications due to progress in technology to this manual,
the software and product described therein without prior notice. No part of this documentation may be re-
produced in any way (photocopy, micro film, or any other process) or be processed, copied or distributed to
third parties by means of electronic systems without express written permission by Antal Electronic.

All information and technical specifications in this manual were compiled with utmost care. However, Antal
Electronics can neither give any guarantee that the information in this manual is correct nor accept any li-
ability, legal or otherwise, for consequences which are due to incorrect information.

All software , hardware and brand names in this manual are property of their respective owners.

Copyright  1997, 1998, 1999, 2000 Antal Electronic. All rights reserved.

Version 3.08
April 2000

33

Contents
1 OPERATIONAL SAFETY 4

2 INTRODUCTION 5

3 HARDWARE 6

3.1 DISPLAY ELEMENTS AND CONNECTIONS 6
3.2 PROFIBUS BUS INTERFACE 8
3.3 DIP SWITCHES 8

4 MODULE CONFIGURATION 9

4.1 SWITCH SW1 9

5 HOW IT WORKS 10

5.1 PARAMETERISATION 10
5.1.1 Composition of the parameter byte 13

5.2 CONFIGURATION 14
5.3 DATA EXCHANGE 14
5.4 DIAGNOSTIC AREA 14
5.5 EMERGENCY AREA 16
5.6 PARAMETERISATION OF CAN MODULES (SDO TRANSFER) 17

5.6.1 Expedited-Transfers (until 4 Bytes data) 17
5.6.2 Segmented-Transfers (> 4 Bytes data) 19

5.7 STARTUP PROCESS CAN NETWORK (CANOPEN MASTER) 20
5.8 EXAMPLE 20

6 PROJECTS WITH STEP 7 23

7 CANOPEN 27

7.1 GENERAL 27
7.1.1 CANopen 27
7.1.2 Transfer medium 28
7.1.3 Bus access 28
7.1.4 Can Baud rate 29
7.1.5 Cables for the CAN Bus 29
7.1.6 Line terminator 29
7.1.7 Message structure: 29

7.1.7.1 CANopen Funktionscodes 30
7.1.7.2 CANopen Object S 31

8 SPECIFICATIONS 34

44

11 Operational SafetyOperational Safety

! Only qualified personell are allowed to install and operate this equipment. Qualified personell are

those trained and certified to install, and operate electronic equipment with respect to the valid electronic
safety standards to date.

! The module must not be installed and wired while in a powered condition.

! To guarantee functionality of the module proper means of transportation, storage and installation

must be observed.

! Use power supplies certified according to the national electronic safety standards.

! Proper connection of all power supply and data line connections to be observed

! When transferring the module from a cold environment to a warm one condensation may occur.

The module has to be perfectly dry before installation and use. Do not install the module near open water
or where high humidity is present.

! No user servicable parts inside. Warranty void if module is opened and/or tampered with.

55

22 IntroductionIntroduction
The PDP 2 CAN bus interface allows you to convert data from a PRODIBUS DP
ring for a secondary CAN ring and vice versa.
The PROFIBUS side is designed as a DP slave. The interfaces correspond to EN
50170. They are galvanically insulated via DC/DC converters and opto couplers. A
C515C micro controller, supported by a SPC3 ASIC (Siemens) is in charge of proto-
col handling. The DP slave supports the entire DP protocol according to EN50170.
Transfer rates from 9.6 baud to 12 Mbaud are detected automatically.
The amount of input and output information is 320 Byte maximum (this corre-
sponds to 10 CAN modules with 2 PDOs each for sending and receiving each of
which is 8 bytes long.)

The CANopen side is designed as a an independent master which can be controlled
via PROFIBUS. Up to 15 CANopen slave modules according to CiA standard DS
301 Version 3.0 can be operated within a CANopen network.
All parameterised modules are automatically detected, started, and monitored by the
CANopen master. For data exchange, up to 5 sending and receiving PDOs and one
emergency message for error messages to the master are used. For parameterisation
of CAN modules, any SDOs can be sent and received.
The CAN bus interface corresponds to ISO/DIS 11898 and is galvanically insulated at
1 kV DC. It was designed with the CAN bus driver module 82C250 and the C1515C mi-
cro controller’s integrated basic CAN controller. The serial interface (RS232, RS422,
RS485 or TTY) is also galvanically insulated.

Chapter

2

66

33 HardwareHardware

3.13.1 Display Elements and ConnectionsDisplay Elements and Connections

ONBA
Grüne LED:
Betriebsspannung

9 pol. D-SUB-Stecker:
PROFIBUS DP

+24V

GND

CAN_L

CAN_H

CAN_GND

Gelbe LED:
Aus: DP Status Data Ex

CAN-BUS

24V DC Spannungsversorgung

An: DP Status Wait Prm

Figure 1 Display and Operation Elements of the PDP 2 CAN

The PDP 2 CAN uses two LEDs as display elements. The green LED indicates correct
power supply, and the yellow LED shows the current status of the PROFIBUS.

The D SUB plug is the connection for the PROFIBUS_DP. The three-pin screw-on
plugs are used for supplying power and for connecting the CAN bus.

Chapter

3

77

Figure 2: Block diagram PDP2CAN

The CAN bus interface corresponds to ISO/DIS 11898 and is galvanically insulated
at 1 kV DC. It was designed with the CAN bus driver module 82C250 and the
C515C micro controller’s integrated basic CAN controller. A SPC3 by Siemens is
responsible for the PROFIBUS protocol handling. It supports the complete PRO-
FIBUS DP protocol according to EN 50170. The interface is galvanically separated
via DC/DC converters and opto couplers. Figure 2 shows the block diagram of the
PDP2CAN.

DC

DC

OP

TO

DC

DC

OP

TO

CPU

C515C

P-DP

Controller

SPC3

CAN-

Trans-

ceiver

82C250

SRAM

32 KB

EPROM

32 KB

MAX

485

88

3.23.2 PROFIBUS Bus InterfacePROFIBUS Bus Interface

Insulation: 1 kV DC via opto coupler and DC/DC converter

Transfer rate: 9,6kBit/s ... 12MBit/s

Allocation of the 9 pin D SUB plug

Pin No. Allocation

1 n.c.
2 n.c.
3 Data channel B (RxD/TXD P)
4 n.c.
5 DGND (data transfer potential, mass at 5V)
6 VP (voltage of the terminator resistors)
7 n.c.
8 Data line A (RxD/TxD N)
9 n.c.

3.33.3 DIP switchesDIP switches

The DIP switch allows you to set the PROFIBUS module address and the CAN baud
rate. It can be found on the bottom of the module.

DIP-Schalter:

1 2 3 4 5 6 7 8

Figure 3 Position of DIP switches

99

44 Module configurationModule configuration

4.14.1 Switch SW1Switch SW1

The DIP switch allows you to configure the PROFIBUS module address (node address)
and the CAN protocol. Switches 1 to 1 set the node address within the range of 1 to 126.
Switch 8 configures the CAN protocol (CANopen and CAN layer 2 protocol). They are
allocated as follows:

Node Address:

Module ID: 1 2 4 8 16 32 64
Switch No.: 1 2 3 4 5 6 7

The settings “0” and “126” are not valid. If they are set, the default setting 1 will be used.

Switch ON means Bit = logical 1
Switch OFF means Bit = logical 0

CAN Protocol:

Switch S8 sets the relevant CAN protocol. Currently, the CAN layer 2 protocol and the more
widely used CANopen protocol is implemented. Further customer specific protocols can be im-
plemented.

Protocol S8

CAN Layer 2 off
CANopen on

Switch ON means Bit = logical 1
Switch OFF means Bit = logical 0

Chapter

4

1010

55 How it worksHow it works
The secondary PDP 2_CAN bus interface allows you to convert data from a PRO-
FIBUS DP ring into for a secondary CAN ring and vice versa. Before it is possible to
transfer data between the PROFIBUS and CAN, the number of CANopen modules in
the CAN ring, their module ID and the length of their respective PDOs must be
specified during the parameterisation phase and during the configuration phase. Af-
ter successful parameterisation and configuration, the CAN modules are started up
and monitored. The diagnostic area of the process image shows the status of the
CAN modules. Additionally, all emergency messages from the CAN bus are dis-
played there. In a SDO window in the process image, CANopen modules can be pa-
rameterised by means of SDO messages. Input and output data are updated per pro-
jected guarding cycle.

5.15.1 ParameterisationParameterisation

Master and slave are identified by means of the parameterisation message. They are
galvanically insulated via DC/DC converters and opto couplers. A C515C micro
controller, supported by a SPC3 ASIC (Siemens) is in charge of protocol handling.
The DP slave supports the entire DP protocol according to EN50170.

The parameterisation message identifies master and slave and determines the work-
ing mode for the slave. User specific parameters configure the following CAN pa-
rameters (shown in an example):

♦ CAN baud rate
♦ Synchronous transfer
♦ Number of CAN nodes in a CAN ring, their module ID and PDO length for

sending and receiving

The sequence of parameters in detail:

0x00: The first parameter byte must always be 0x00; it is used internally by the
PROFIBUS

Chapter

5

1111

CAN Baudrate
The first byte in the parameter message configures the CAN baud rate. The following
baud rates are supported:

 Value (hex) Baud rate

00 1000 KBit/s
01 500 KBit/s
02 250 KBit/s
03 125 KBit/s
04 100 KBit/s
05 50 KBit/s
06 20 KBit/s
07 10 KBit/s

SYNC_TIME
Here, the synch time is set in units of 1 ms (10 ms to 64 ms are possible) range
(0A..40(hex)). Sync time = 0 means that synchronous mode is not supported.

Number of CAN modules
The number of CAN nodes in the ring is set here (range: 1 .. 15)

Parameter CAN module 1 (Please see chapter 5.1.1 Composition of the parameter byte)

 Module ID (Please see chapter 5.1.1 Composition of the parameter byte)
The module ID of the CAN node is entered here. (range: 1..127; see parameter byte).
 Length PDO 1 rx (Please see chapter 5.1.1 Composition of the parameter byte)
This sets the length of receiving PDO 1 (see parameter byte).
 Length PDO 2 rx (Please see chapter 5.1.1 Composition of the parameter byte)
This sets the length of receiving PDO 2 (see parameter byte).
 Length PDO 3 rx (Please see chapter 5.1.1 Composition of the parameter byte)
This sets the length of receiving PDO 3 (see parameter byte).
 Length PDO 4 rx (Please see chapter 5.1.1 Composition of the parameter byte)
This sets the length of receiving PDO 4 (see parameter byte).
 Length PDO 5 rx (Please see chapter 5.1.1 Composition of the parameter byte)
This sets the length of receiving PDO 5 (see parameter byte).
 Length PDO 1 tx (Please see chapter 5.1.1 Composition of the parameter byte)
This sets the length of sending PDO 1 (see parameter byte).
 Length PDO 2 tx (Please see chapter 5.1.1 Composition of the parameter byte)
This sets the length of sending PDO 2 (see parameter byte).
 Length PDO 3 tx (Please see chapter 5.1.1 Composition of the parameter byte)

1212

This sets the length of sending PDO 3 (see parameter byte).
 Length PDO 4 tx (Please see chapter 5.1.1 Composition of the parameter byte)
This sets the length of sending PDO 4 (see parameter byte).
 Length PDO 5 tx (Please see chapter 5.1.1 Composition of the parameter byte)
This sets the length of sending PDO 5 (see parameter byte).

Only the PDO lengths supported by the CAN module are to be entered here.
.
.
Parameters CAN module n (Please see chapter 5.1.1 Composition of the parameter byte)
 Module ID (Please see chapter 5.1.1 Composition of the parameter byte)
The module ID of the CAN node is entered here. (range: 1..127; see parameter byte).
 Length PDO 1 rx (Please see chapter 5.1.1 Composition of the parameter byte)
This sets the length of receiving PDO 1 (see parameter byte).
 Length PDO 2 rx (Please see chapter 5.1.1 Composition of the parameter byte)
This sets the length of receiving PDO 2 (see parameter byte).
 Length PDO 3 rx (Please see chapter 5.1.1 Composition of the parameter byte)
This sets the length of receiving PDO 3 (see parameter byte).
 Length PDO 4 rx (Please see chapter 5.1.1 Composition of the parameter byte)
This sets the length of receiving PDO 4 (see parameter byte).
 Length PDO 5 rx (Please see chapter 5.1.1 Composition of the parameter byte)
This sets the length of receiving PDO 5 (see parameter byte).
 Length PDO 1 tx (Please see chapter 5.1.1 Composition of the parameter byte)
This sets the length of sending PDO 1 (see parameter byte).
 Length PDO 2 tx (Please see chapter 5.1.1 Composition of the parameter byte)
This sets the length of sending PDO 2 (see parameter byte).
 Length PDO 3 tx (Please see chapter 5.1.1 Composition of the parameter byte)
This sets the length of sending PDO 3 (see parameter byte).
 Length PDO 4 tx (Please see chapter 5.1.1 Composition of the parameter byte)
This sets the length of sending PDO 4 (see parameter byte).
 Length PDO 5 tx (Please see chapter 5.1.1 Composition of the parameter byte)
This sets the length of sending PDO 5 (see parameter byte).

Only the PDO lengths supported by the CAN module are to be entered here.

1313

5.1.1 Composition of the parameter byte

In order to allow efficient and memory saving parameterisation, the lengths of the
PDOs supported are defined by the following convention:
Bit 7 marks CAN module ID or PDO length, the next 3 bits mark the PDO number,
bit 3 marks input or output PDO respectively, and the 3 lower bits mark the length of
the PDO.

Parameter byte:

7 6 5 4 3 2 1 0

PDO Length 000 = 1 Byte
001 = 2 Byte
010 = 3 Byte
011 = 4 Byte
100 = 5 Byte
101 = 6 Byte

 110 = 7 Byte
111 = 8 Byte

0 Input (rx)
1 Output (tx)

PDO No: 001 = PDO 1
010 = PDO 2
011 = PDO 3
100 = PDO 4
101 = PDO 5

 0 PDO Length
 1 CAN module ID

e.g.: Module ID 1 > 1 000 0 001 = 81 (hex)
Module ID 32 > 1 010 0 000 = A0 (hex)

 PDO 1 rx, Length 3Byte > 0 001 0 010 = 12 (hex)
PDO 4 tx, Length 4Byte > 0 100 1 011 = 4B(hex)

1414

5.25.2 ConfigurationConfiguration

After parameterisation, the master has to send a configuration message to the respec-
tive slave. The slave receives information about the length of input and output data.

The user composes the configuration message in the project tool, where it is also
possible to enter the address range in which effective data are stored (see example)

If the slave detects during the check up that input and output lengths do not corre-
spond to the parameterisation, it will report a configuration error to the master during
a later diagnostic query.
In this case, it will not be ready for transfer of effective data.

5.35.3 Data exchangeData exchange

After the master has detected error free parameterisation and configuration at the end of
the start sequence, it will send data exchange messages. For this purpose, the PRO-
FIBUS master cyclically sends all data of parameterised sending identifiers to the PDP 2
CAN. Every change in data (both on the CANopen and the PROFIBUS side) is trans-
ferred instantly during the next cycle. In addition, the input data of CANopen modules is
updated per guarding cycle (default 1 s).

5.45.4 Diagnostic areaDiagnostic area

The diagnostic area consists of 8 bytes. It informs the user about any invalid area in the
process image and about any CAN module which is not operational.

Byte 0

7 0
Entry 1 in the process image invalid

Entry 2 in the process image invalid

Entry 8 in the process image invalid

:

:

1515

Byte 5

7 0
Entry 41 in the process image invalid

Entry 42 in the process image invalid

Entry 48 in the process image invalid

Byte 6

7 0

CAN module 1 not operational

CAN module 7 not operational

Byte 7

7 0
CAN module 8 not operational

CAN module 9 not operational

CAN module 15 not operational

1616

5.55.5 Emergency areaEmergency area

Emergency messages coming from the CAN bus are copied into the emergency area.
The first emergency message sent over the CAN bus is copied directly into the emer-
gency area, and all others are stored in a ring buffer on the PDP 2 CAN. They are written
into the emergency area as soon as the user has read the previous emergency message.
Because of this, a handshake has been programmed. The emergency message is com-
posed in the following way:

EMERGENCY:
Message length (total): 11
Byte 0: CANopen module ID (1 to 15)
Byte 1: 0 to 8 (data length)
Byte 2 to 9: (data bytes)

Handshaking for EMERGENCY messages:

The handshaking bits are located in the high byte of byte 0 in the SDO message.

If set, bit 4 (in Byte 0 of receiving SDO) indicates a new emergency message in the
emergency area.
If set, bit 5 (in Byte 0 of receiving SDO) indicates that data in the emergency area are
valid.
if set, Bit 6 (in Byte 0 of receiving SDO) indicates that the data has been read by the
user.

Sequence:
PDP2CAN: If Bit 4 and Bit 6 = 0 and EMERGENCY messages in Ring buffer,

write first EMERGENCY message into emergency area, set bit 4 and bit
5 wait until bit 6 is set

if Bit 6 = 1, delete emergency area, delete Bit 4 and Bit 5

User: wait for bit 4 and bit 5, read EMERGENCY message, set bit 6

Wait until bits 4 and bit 5 are deleted, delete bit 6

1717

5.65.6 Parameterisation of CAN modules (SDO Transfer)Parameterisation of CAN modules (SDO Transfer)

The SDO communication (SDO = Service Data Object) is a confirmed or acknowl-
edged service of the CANopen protocol. This means that during error free operation,
the addressed module sends a SDO response to a SDO request. SDOs are normally
required for parameter configuration (write request PDO) or parameter query (read
request SDO) on a module (CANopen slave). They are not suitable for fast process
data transfer, which is handled by PDOs.
The PDP 2 CAN handles all SDO communication over a 11 byte window in the pro-
cess image.

The PDP-2-CAN is capable to send both Expedited and Segmented transfers. An ex-
pedited transfer is always four (4) bytes long while the segmented transfer may have
any length.

WARNINGWARNING

It is absolutely necessary to wait for the answer of the addressed module. This means that
only one SDO transfer at a time can be processed!

The SDO messages are composed in the following way:
5.6.1 Expedited-Transfers (until 4 Bytes data)

CAL_WRITE_REQ (send SDO variable Write):
Message length (total): 11
Byte 0: Handshake Byte
Byte 1: 36 (message type)
Byte 2: CANopen module ID (1 to 15)
Byte 3: Index (High Byte)
Byte 4: Index (Low Byte)
Byte 5: Sub index
Byte 6: 1 to 4 (number of valid data bytes)
Byte 7 to 10: (data bytes)

CAL_READ_REQ (send SDO variable Read):
Message length (total): 6
Byte 0: Handshake Byte
Byte 1: 39 (message type)
Byte 2: CANopen module ID (1 to 15)
Byte 3: Index (High Byte)
Byte 4: Index (Low Byte)
Byte 5: Sub index

1818

CAL_READ_CNF_P (receive SDO Var Read Resp pos.):
Message length (total): 11
Byte 0: Handshake Byte
Byte 1: 40 (message type)
Byte 2: CANopen module ID (1 to 127)
Byte 3: 4 to 7 (Data length)
Byte 4: Index (High Byte)
Byte 5: Index (Low Byte)
Byte 6: Sub index
Byte 7 to 10: (Data bytes)

CAL_READ_CNF_N (receive SDO Var Read Resp neg.):
Message length (total): 11
Byte 0: Handshake Byte
Byte 1: 40 (message type)
Byte 2: CANopen module ID (1 to 127)
Byte 3: 4 to 7 (Data length)
Byte 4: Index (High Byte)
Byte 5: Index (Low Byte)
Byte 6: Sub index
Byte 7: Error_Class
Byte 8: Error_Code
Byte 9: Additional_Code (High Byte)
Byte 10: Additional_Code (Low Byte)

CAL_WRITE_CNF_P (receive SDO Var Write Resp pos.):
Message length (total): 7
Byte 0: Handshake Byte
Byte 1: 37 (message type)
Byte 2: CANopen module ID (1 to 127)
Byte 3: 3 (data length)
Byte 4: Index (High Byte)
Byte 5: Index (Low Byte)
Byte 6: Sub index

CAL_WRITE_CNF_N (receive SDO Var Write Resp neg.):
Message length (total): 11
Byte 0: Handshake Byte
Byte 1: 38 (message type)
Byte 2: CANopen module ID (1 to 15)
Byte 3: 7 (data length)
Byte 4: Index (High Byte)
Byte 5: Index (Low Byte)
Byte 6: Sub index
Byte 7: Error_Class
Byte 8: Error_Code
Byte 9: Additional_Code (High Byte)
Byte 10: Additional_Code (Low Byte)

1919

5.6.2 Segmented-Transfers (> 4 Bytes data)

CAL_SEGMENTED_REQ (send Segmented SDO-Transfer):
Message length (total): 11
Byte 0: Handshake-Byte
Byte 1: 60 (Telegrammtyp)
Byte 2: CANopen Modul-ID (1 until 15)
Byte 3: SDO-Telegramm-Specifier (CCS,t,X,n,e,s,c) (Byte 0 CANopen SDO-telegramm)
Byte 4: (Byte 1 CANopen SDO-telegramms) z. B. Index (Low Byte)
Byte 5: (Byte 2 CANopen SDO-telegramms) z. B. Index (High Byte)
Byte 6: (Byte 3 CANopen SDO-telegramms) z. B. Subindex
Byte 7 bis 10: (Bytes 4-7 CANopen SDO-telegramms) z. B. Datenbytes

CAL_SEGMENTED_RSP (receive Segmented SDO-Transfer):
Message length (total): 11
Byte 0: Handshake-Byte
Byte 1: 61 (Telegrammtyp)
Byte 2: CANopen Modul-ID (1 until 15)
Byte 3: SDO-Telegramm-Specifier (SCS,t,X,n,e,s,c) (Byte 0 CANopen SDO-Telegramms)
Byte 4: (Byte 1 CANopen SDO-Telegramms) z. B. Index (Low Byte)
Byte 5: (Byte 2 CANopen SDO-Telegramms) z. B. Index (High Byte)
Byte 6: (Byte 3 CANopen SDO-Telegramms) z. B. Subindex
Byte 7 bis 10: (Bytes 4-7 des CANopen SDO-Telegramms) z. B. Datenbytes

SDO Timeout:
Message length (total): 11
Byte 0: Handshake Byte
Byte 1: 240 (message type)
Byte 2: CANopen module ID (1 to 15)
Byte 3 to 10: 0

This telegram appears in the receive area (SDOrx) if there is no answer received
from the slave after a time period of 200 ms.

Handshaking (Send SDO)

If set, Bit 0 indicates data is valid, send SDO message
If deleted, Bit 0 indicates data not valid, wait for next SDO message. This bit must be
set to 0 between two SDO messages.

Handshaking (receiving SDO)

Bit 0 set, SDO Transfer is active
If set, Bit 1 set indicates valid data in reception buffer (Data Valid)
If set, Bit 2 indicates that the SDO message has been sent (Data Send)

2020

5.75.7 Startup process CAN Network (CANopen Master)Startup process CAN Network (CANopen Master)

Detection and startup of slave modules connected to the CAN network are carried out as follows:

1. Reading the Guarding COB ID (Object 0x100E, 0x00) of all modules (1 to 127)
2. Reading Emergency COB ID (Object 0x1014, 0x00), active modules only
3. Reading PDO1M2S COB ID (Object 0x1400, 0x01), active modules only
4. Reading PDO2M2S COB ID (Object 0x1401, 0x01), active modules only
5. Reading PDO1S2M COB ID (Object 0x1800, 0x01), active modules only
6. Reading PDO2S2M COB ID (Object 0x1801, 0x01), active modules only
7. Reading PDO1M2S transmission type (Object 0x1400, 0x02), only if PDO valid
8. Reading PDO2M2S transmission type (Object 0x1401, 0x02), only if PDO valid
9. Writing guard time (Object 0x100C, 0x00) to active modules (Default: 1 s)
10. Writing lifetime factors (Object 0x100D, 0x00) to active modules (Default: 2)
11. Wait 100 ms
12. NMT Broadcast Start Node
13. Module guarding starts
14. In every guarding cycle, the current state of input channels (if available) is queried, and output

channels (if available) are updated.
15. If an active module fails to respond to a guarding request, a new startup attempt will be made,

and processes 1 to 12 will begin again as soon as the module has been identified as a bus de-
vice.

5.85.8 ExampleExample

In order to save time for troubleshooting and for putting the installation into opera-
tion, it is recommended to draw up a table of I/O modules the ring, their CAN identi-
fiers and byte lengths. CAN identifiers are usually set by means of DIP switches on
the node modules.

Example A
Three CAN bus nodes are configured as shown below:

1. Node:
1. Digital input module with one 8 bit input channel
2. Digital output modules with one 8 bit input channel
3. Node address is set to 11

2121

2. Node:
1. Digital input module with one 8 bit input channel
2. Digital output modules with one 8 bit input channel
3. Node address is set to 32

3. Node:
1. Digital input module with 8 x 8 bit input channel
2. Digital output module with 4 64 bit output channels
3. Node address is set to 2

This results in the following allocation table:

Mod-
ule ID

PDO
Length in

Byte

User Parameters
(hex)

Config data GSD
file

Always 00 00
CAN Baud rate (500kBaud) 01
Synchronous mode (off) 00
Number of CAN modules 03

EA-area for SDO SDOrx
EA-area for SDO SDOtx
EA-area for Diagn. DIAG
EA-area for Teleg. EMGY

Module ID (1 xxx x xxx) 11 8B
PDO 1 rx (0 001 0 xxx) 1 (000) 10 PDOrx 1 Byte
PDO 2 rx (0 010 0 xxx)
PDO 3 rx (0 011 0 xxx)
PDO 4 rx (0 100 0 xxx)
PDO 5 rx (0 101 0 xxx)
PDO 1 tx (0 001 1 xxx) 1 (000) 18 PDOtx 1 Byte
PDO 2 tx (0 010 1 xxx)
PDO 3 tx (0 011 1 xxx)
PDO 4 tx (0 100 1 xxx)
PDO 5 tx (0 101 1 xxx)

Module ID (1 xxx x xxx) 20 A0
PDO 1 rx (0 001 0 xxx) 1 (111) 17 PDOrx 8 Byte
PDO 2 rx (0 010 0 xxx)
PDO 3 rx (0 011 0 xxx)
PDO 4 rx (0 100 0 xxx)
PDO 5 rx (0 101 0 xxx)
PDO 1 tx (0 001 1 xxx) 1 (111) 1F PDOtx 8 Byte

2222

PDO 2 tx (0 010 1 xxx)
PDO 3 tx (0 011 1 xxx)
PDO 4 tx (0 100 1 xxx)
PDO 5 tx (0 101 1 xxx)

Module ID (1 xxx x xxx) 2 82
PDO 1 rx (0 001 0 xxx)
PDO 2 rx (0 010 0 xxx)
PDO 3 rx (0 011 0 xxx)
PDO 4 rx (0 100 0 xxx)
PDO 5 rx (0 101 0 xxx)
PDO 1 tx (0 001 1 xxx) 1 (111) 1F PDOtx 8 Byte
PDO 2 tx (0 010 1 xxx) 1 (111) 2F PDOtx 8 Byte
PDO 3 tx (0 011 1 xxx) 1 (111) 3F PDOtx 8 Byte
PDO 4 tx (0 100 1 xxx) 1 (111) 4F PDOtx 8 Byte
PDO 5 tx (0 101 1 xxx)

This environment requires the following parameterisation and configuration data (in
hex, separated by comma)

Hex-Parameter (PDP2CAN-specific):
00,01,00,03,8B,10,18,A0,17,1F,82,17,1F,2F,3F,4F,00,00,00,00,00....

Configuration data:

SDOrx
SDOtx
DIAG
EMGY
PDOrx 1 Byte
PDOtx 1 Byte
PDOrx 8 Byte
PDOtx 8 Byte
PDOrx 8 Byte
PDOtx 8 Byte
PDOtx 8 Byte
PDOtx 8 Byte
PDOtx 8 Byte

With these configuration data, the objects SDOrx, SDOtx, DIAG, EMGY have
to be configured in the sequence shown above. If they are not, PDP-2-CAN will
report a parameterisation error.

2323

66 Projects with STEP 7Projects with STEP 7
Perform the following steps:

Copy GSD file PDP2CAN.GSD into path ..\S7DATA\GSD.
Use command update GSD files in order to update the hardware catalogue.
Activate slave PDP2CAN from the path “other field bus devices”, “others”.
All possible configuration Ids will be shown similar to figure 4: slave modules
The PDP2CAN slave can be placed into the Profibus(1) net by drag and drop.
Assign the desired address to the slave.

Figure 4: Slave modules

Chapter

6

2424

When this is done, take the desired PDP2CAN module from the hardware catalogue
and place it (per drag and drop) into the slave’s composition list according to the
configuration list.
When selecting “DP slave properties” (DP slave Eigenschaften) in the parameterisa-
tion section, general and user-specific parameterisation can be carried out (see fig-
ures 5 and 6). Figure 6 also shows a sample parameterisation.

Figure 5: general properties DP Slave

2525

Figure 6: user specific parameterisation DP Slave

2626

Figure 7: process image DP Slave

2727

77 CANopenCANopen

7.17.1 GeneralGeneral

The CAN bus (control area network) is an international open field bus standard for
buildings, automation of manufacturing and processes. Originally, it was developed
for car technology. Because of its comprehensive error recognition, the CAN bus is
considered the safest bus system with a remaining error probability of less than 4.7 x
10 11. Faulty messages are signalled and sent again automatically.
In contrast to Profibus and Interbus S, different layer 7 user profiles are defined ac-
cording to CAL layer 7 protocol. (CAL=CAN application layer). One is these user
profiles is CANopen. The CiA (CAN in Automation) is in charge of its standardisa-
tion.

7.1.1 CANopen

CANopen is the user profile in the area of industrial real-time systems. It is currently
being implemented by many manufacturers. CANopen was published as profile DS
301 by the CAN user organisation CiA. The communication profile DS 301 was de-
signed for standardisation of devices.
Products from different manufacturers become thus interchangeable.
In addition to that, device-specific data and process data are standardised in the de-
vice profile DS 401 in order to ensure that devices are interchangeable. DS 401 is
standardises digital and analogue input/output modules. The CANopen communica-
tion profile is based on an object directory similar to the one used by Profibus. The
communication profile DS 301 defines two types of objects as well as some special
objects:

• Process data objects (PDO)
PDOs are used for transferring real-time data

• Service data objects (SDO)
SDOs allow read and write access to the object directory

Chapter

7

2828

It consists of a communication profile specifying the objects which are to be used for
transfer of specific data, and the device profiles which define the data to be trans-
ferred together with the objects.

7.1.2 Transfer medium

CAN is based on a bus topology. You have the option of building up a network
structure by means of router nodes. The number of participants in the net is only
limited by the performance of the bus driver module used.
The maximum network extension is limited speed of signals. At 1 Mbaud, the maxi-
mum total length is 40 meters, and at 80 Kbauds, 1000 meters are possible. CAN bus
uses a shielded three-wire cable as transfer medium (five-wire cable optional).
The CAN bus works with differences in voltage. Thus, it is less susceptible against
interference than a voltage or electric current interface. The net should be configured
as a bus with a 120 Ω terminator resistor at the end.
All devices on the net communicate at the same baud rate. The bus topology enables
you to integrate and remove components without consequences and allows you to put
the installation into operation in a step-by-step process. Later extensions have no ef-
fect on devices which are already operational. The system detects automatically if a
device malfunctions or if new devices are present on the net.

7.1.3 Bus access

In general, one can differentiate between controlled (deterministic) or uncontrolled
(random) bus access.
CAN works according the system Carrier Sense Multiple Access (CSMA), which
means that every device has the same privileges concerning bus access and is able to
access the bus as soon as it is free (random bus access)
The exchange of messages is related to the messages, not the devices. Every message
is unambiguously marked with a priority identifier. Only one device at a time can use
the bus for its message. During simultaneous multiple access
The bus access control within CAN is done by means of non-destructive, bit-wise ar-
bitration.
Non-destructive means that the winner determined by the arbitration process does
not have to re-send its message. In a situation where multiple a simultaneous access
takes place, the device with the highest priority is selected. When a device which is
ready to send detects that the bus is busy, it will delay its request to send until the
current transfer has finished.

2929

7.1.4 Can Baud rate

CAN Baud rate gar. max. bus length
1 Mbaud 25 m

500 kBaud 100 m
250 kBaud 250 m
125 kBaud 500 m
100 kBaud 600 m
50 kBaud 1000 m
20 kBaud 2500 m
10 kBaud 5000 m

7.1.5 Cables for the CAN Bus

The CAN Bus uses a shielded three-wire cable.

Figure 7 1: CAN Bus: cables

7.1.6 Line terminator

In systems with more than two devices, all devices are wired parallel. The bus cable
must be run through the device without interruption

A terminator resistor must be used at both cable ends in order to
avoid signal reflection and transfer problems!

7.1.7 Message structure:

All CANopen messages use the following structure:

3030

Fig. 7 2: CANopen: message structure

In contrast to a layer 2 message, there is an additional separation of the 2 Byte identi-
fier into a function part and a module ID. The function part specifies the type of the
message (object), addresses the recipient by means of the module ID. The data ex-
change between CANopen devices is carried out by means of objects. The CANopen
communication profile defines two object types and several special objects. Every
object is assigned a function code (please see following table)

7 .1 .7 .1 CANOPEN FUNKTIONSCODES

This table lists the objects defined under CANopen with their function codes.

Object Function
Code

(4 Bits)

Recipient Definition Function

NMT 0000 Broadcast CiA DS 301 Network management
EMERGENCY 0001 Master CiA DS 301 Error message

PDO1S2M 0011 Master, Slave (RTR) CiA DS 301 Digital input data 1
PDO1M2S 0100 Slave CiA DS 301 Digital output data 1

3131

PDO2S2M 0101 Master, Slave (RTR) CiA DS 301 Analogue input data 1
PDO2M2S 0110 Slave CiA DS 301 Analogue output data

1
PDO3S2M 0111 Master, Slave (RTR) Application spec. D o. A input data 2
PDO3M2S 1000 Slave Application spec. D o. A output data 2
PDO4S2M 1001 Master, Slave (RTR) Application spec. D o. A input data 3
PDO4M2S 1010 Slave Application spec. D o. A output data 3
PDO5S2M 1101 Master, Slave (RTR) Application spec. D o. A input data 4
PDO5M2S 1111 Slave Application spec. D o. A output data 4
SDO1S2M 1011 Master CiA DS 301 Configuration data
SDO1M2S 1100 Slave CiA DS 301 Configuration data

Node Guarding 1110 Master, Slave (RTR) CiA DS 301 Module monitoring

The exact structures and contents of all objects are described in detail in "CiA Communication Pro-
file DS 301 Version 3.0" and "CiA Device Profile for I/O Modules DPS 401 Version 1.4".

7 .1 .7 .2 CANOPEN OBJECT S

PDO
For the exchange of process data, Process Data Objects (PDOs) are available. Every PDO consists
of 8 data bytes. Transmit PDOs are used for input data, and Receive PDOs for output data. PDOs
are transferred without confirmation, because the CAN protocol ensures that the data is transmitted
correctly.

SDO
The Service Data Object (SDO) is used for access to the object directory. The SDO allows read or
write access to the object directory. The specifications for the Multiplexed Domain Transfer Proto-
col used by the SDO can be found in the CAN layer 7 protocol. If necessary, messages are split into
several CAN messages with identical identifiers (segmentation). In the SDO`s first CAN message, 4
or 8 bytes are used for protocol information. For access to the object directory with a maximum
length of up to 4 bytes, a single CAN message is sufficient. When the data is longer than 4 bytes, a
segmented transfer takes place. The following SDO objects contain up to 7 bytes effective data. The
last bit carries and end marker. Transfer of SDOs is confirmed, i.e. the reception of every message is
acknowledged. A detailed description of the exact structure and contents of all objects can be found
in "CiA Communication Profile DS 301 Version 3.0" and in "CiA Device Profile for I/O Modules
DS 401 Version 1.4". All necessary error messages for SDOs according to DS 301 have been im-
plemented.

Emergency Object
Emergency objects are broadcast so that other devices on the CAN bus can be informed about inter-
nal device errors. After boot up, the COB identifier configured in the variable 1014h for the emer-
gency message is 080h + module ID (hex notation).

3232

CANopen EMERGENCY message contents:

Byte No. Contents
0 Emergency Error Code (DS 301) low Byte
1 Emergency Error Code (DS 301) high Byte
2 Emergency Error Register (DS 301)
3 Application specific Error Code
4 Additional Error Information 1
5 Additional Error Information 2
6 Additional Error Information 3
7 Additional Error Information 4

Node Guarding
CAN open defines Node Guarding in order to allow monitoring bus devices. The guarding operation
of the module starts with the first guarding request message (RTR) received by the master. The re-
spective COB identifier is firmly set to 700h + module ID in the object directory. If, during guarding
operation, no guarding request message (RTR) is received within the parameter specified in “Guard
Time” (Object 100Ch), the module will assume that the master is not working correctly any more.
After the time set by the product of “Guard Time” (100Ch) and “Life Time Factor” (100Dh), the
module automatically switches to “Pre-Operational” mode.

If either “Guard Time” (100Ch) or “Life Time Factor” (100Dh) is set to zero by means of SDO
download from the master, no check for the expiration of guarding time is carried out, and the mod-
ule will remain in its current mode.

3333

NMT
The network management (NMT) specifies global services for network monitoring and man-
agement. This includes, apart from login on and out individual devices, monitoring all de-
vices during normal operation and handling exceptions.

NMT service messages have the COB identifier 0000h. An additional module ID is not re-
quired. Length is always 2 data bytes. The first data byte contains the NMT Command
Specifier:

NMT Services (DS 301):

(6): "Start_Remote_Node"
NMT Command Speci-

fier: 01h

(7): "Stop_Remote_Node"
NMT Command Speci-

fier: 02h

(8): "Enter_Pre opera-
tional_State"

NMT Command Speci-
fier: 80h

(10): "Reset_Node"
NMT Command Spe ci-

fier: 81h

(11): "Reset_Communication"
NMT Command Speci-

fier: 82h

(12): Initialisation finished
enter Preoperational

automatically

The second data byte contains
the module ID (00h for a
Broadcast Command).

Operational

Pre-Operational

Initialise
Communication

Initialise
Hardware

Prepared

(6)

(8)

(6)

(7)

(7)

(8)

(10)
(11)

(10)
(11)

(10)
(11)

(11)

(10)

(12)

(12)

3434

88 SpecificationsSpecifications
Voltage: 24V DC

Power consumption: ca. 150mA

Galvanic insulation: 1 kV DC

Bus speed CAN: max. 1 MBit

Bus speed Profibus: max. 12 MBit

Protection: IP 20

Dimensions: height: 80mm

width: 23mm

depth: 90mm

Mounting: Hat-Rail mounting

General Warning!

In order to conform to EMV regulations, all data lines must be shielded. This shield
must be connected to the earth potential. All earth clamp of our modules must be
connected to the earth potential, too.
Antal Electronic will not guarantee compliance to EMV protection measures if these
measures are not taken.

